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Discrete Monge Problem (1781)

() How to handle repeated points ?

(i) How to handle different numbers of points ?
(iif) How to compute this combinatorial problem 7
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Discrete Kantorovitch Problem

W5 (u,v) = min ZZH% yill* 7

Pe il(ab)z 1 i1

where [t = Za 0z, and v = Zb 4, are probability measures

71=1

2-\Wasserstein distance

f a € R" b € R™ are probability weights, we
define the associated transportation polytope:

{(a,b) ={P eR>*™|Pl,, =a,P 1, =b}



In practice, one color should

be mapped to exactly one
color. In other words, we

want to find a map
T:R* — R

that is optimal in some

sense.
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Let /1 and V be two probability measures over R

in / o — T(@)|dp(x)

Typ=v

nen does the Monge problem admit a solution 7

2 =

nat can be said about it ?



Let /1 and V be two probability measures over R

1.

it [ o = T(a) Pdp(a)

Typ=v

Brenier Theorem

It [ is absolutely continuous with respect to
the Lebesgue measure, the Monge problem
admits a unique solution
f the Monge problem admits a solution /',
then there exists a convex function f, called
a Brenier potential, s.t.
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Instead of finding assumptions under which the

Op
Wi

timal map exists and exhibits some regularity, we
enforce such existence/regularity directly in the

" problem.












We ask that /' = V | is a bi-Lipschitz ma



We ask that [ is smooth and strongly convex



convex



But there may not even such a regular [ that is
admissible for the Monge problem, i.e. such

that (V )y = 1.
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Smooth and Strong Convex
Brenier Potentials




Even when the measures are discrete, this is a
infinite dimensional optimization problem !
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Even when the measures are discrete, this is a
infinite dimensional optimization problem !

in Wo |V fsu, v
(min. 2 [V fap ]

Finite dimensional
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Solved by alternating minimization JEFe, L
onf and Wasserstein computation

We can easily compute the map on any new point
by solving a cheap QCQP

This defines an estimator V f"of the optimal transport
map sending (i to I/

We define the SSNB estimator as a plug-in:
W3 = [l = Vo (@lPdu(o



Regularity “by part”
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