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Discrete Monge Problem (1781)

() How to handle repeated points ?

(i) How to handle ditterent numbers ot points ?
(iif) How to compute this combinatorial problem ?



Leonid Kantorovich
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Discrete Kantorovitch Problem

W5 (u,v) = min ZZH% yill* 7
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where /= Za 0z, and v = Zb 6, are probability measures

71=1

2-Wasserstein distance

f a € R" b &€ R"™ are probability weights, we
define the associated transportation polytope:

{(a,b) ={P eR>*™|Pl,, =a,P 1, =b}



Why
should we
care?




Many applications in Machine Learning, some
related to Astrophysics:

® Brenier et al., Reconstruction of the early
Universe as a convex optimization problem 1999

® \Wasserstein Dictionary Learning

® Computer Graphics

® Generative Models

® Model fitting (Minimum Kantorovich Estimators)
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Let /1 and V be two probability measures over R

it [ o = T(a) Pdp(a)

Typ=v

When does the Monge problem admit a solution ?
What can be said about it ?



Let /1 and V be two probability measures over R

1.

it [ o = T(a) Pdp(a)

Typ=v

Brenier Theorem

It [ is absolutely continuous with respect to
the Lebesgue measure, the Monge problem
admits a unique solution
f the Monge problem admits a solution /',
then there exists a convex function f called
a Brenier potential, s.t.

T =V



When the optimal map exists (e.g. when [t has a
density), what kind of regularity does it exhibit ?
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Instead of finding assumptions under which the

optimal map exists and exhibits some regularity, we
will enforce such reqgularity directly in the OT
problem.
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We ask that /' = V | is a bi-Lipschitz ma



We ask that | is smooth and strongly convex
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admissible for the Monge problem, i.e. such

that (V f)sp = 1.
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But there may not even such a regular [ that is
admissible for the Monge problem, i.e. such

that (Vf)yp = 1.

Instead, we will try to best approximate 1/ as a
push-torward of /4 through a regular map:

Smooth and Strong Convex
Brenier Potentials
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We can easily compute the map on any new point

by solving a cheap QCQP
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We can easily compute the map on any new point

by solving a cheap QCQP

This defines an estimator V f"of the optimal transport
map sending (i to V/

We define the SSNB estimator as a plug-in:
W3 = [l = Vo (@lPdu(o



Regularity “by part”

gs







/,

QUESTIONS ?

Cédric Villani



