Regularizing Optimal Transport
Using Regularity Theory
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Discrete Monge Problem (1781)

() How to handle repeated points ?

(i) How to handle different numbers of points ?
(i) How to compute this combinatorial problem ?



Leonid Kantorovich
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Discrete Kantorovitch Problem
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where /= Za 0z, and v = Zb 6, are probability measures
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2-Wasserstein distance

f a € R" b &€ R"™ are probability weights, we
define the associated transportation polytope:
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n statistics, we can interpret the data points as iid samples

from two densities / probability measures:
L1yeeeydn ~ U Y15y Yn 2V

We can define the Monge problem and the Kantorovich
problem in the general case of two probability measures.
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Kantorovich
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Given samples

Tiyeney @y ~ [
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can we reconstruct the Wasserstein distance

between the generating measures ?

A natural estimator is the Wasserstein between

the empirical measures:
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Given samples

LlyeeeyLpy ~ [
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can we reconstruct the Wasserstein distance

between the generating measures ?

Curse of Dimensionality
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Let /1 and V be two probability measures over R

it [ o = T(a) Pdp(a)

Typ=v

When does the Monge problem admit a solution ?
What can be said about it ?



Let /1 and V be two probability measures over R

1.

it [ o = T(a) Pdp(a)

Typ=v

Brenier Theorem

It [ is absolutely continuous with respect to
the Lebesgue measure, the Monge problem
admits a unique solution
f the Monge problem admits a solution /',
then there exists a convex function f called
a Brenier potential, s.t.
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When the optimal map exists (e.g. when [t has a
density), what kind of regularity does it exhibit ?
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even hope for continuity. Many results by Caffarelli,
De Philippis, Kim, Figalli...
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Instead of finding assumptions under which the

optimal map exists and exhibits some regularity, we
will enforce such reqgularity directly in the OT
problem.
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We ask that /' = V | is a bi-Lipschitz ma



We ask that | is smooth and strongly convex



convex



But there may not even such a regular [ that is
admissible for the Monge problem, i.e. such

that (V f)sp = 1.
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that (Vf)yp = 1.

Instead, we will try to best approximate 1/ as a
push-torward of /4 through a regular map:

Smooth and Strong Convex
Brenier Potentials




Even when the measures are discrete, this is a
infinite dimensional optimization problem !
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by solving a cheap QCQ
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We can easily compute the map on any new point

by solving a cheap QCQP
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map sending (i to V/
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We can easily compute the map on any new point

by solving a cheap QCQP

This defines an estimator V f"of the optimal transport
map sending (i to V/

We define the SSNB estimator as a plug-in:
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We can easily compute the map on any new point

by solving a cheap QCQP

This defines an estimator V f"of the optimal transport
map sending (i to V/

We define the SSNB estimator as a plug-in:
W3 = [l = Vo (@lPdu(o



Regularity “by part”
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Estimation Error depending on K

Local Regularity
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Estimation Error depending on n
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Estimation Error depending on n

Same rate, better

constant ?
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QUESTIONS ?

Cédric Villani



