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Par M. M o N G E.

orsQu’oN doit tranfporter des terres d'un lieu dans un
L autre, on a coutume de donner le nom de Déblai au
volume des terres que Y'on doit tranfporter, & le nom de
Remblai a Vefpace qu'elles doivent occuper apres le tran[:po‘l"t.
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déblais remblais

How to move the déblais to build
the remblais with minimal effort?
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(\ . Two distributions 1t and 7 overR?

. A cost function

14
\\ c:R*xR* - R

inf /c(x,T(x))d,u(x)

</> S p=v

X~vp=T(X)~v VA C RYBorel, v(A) = u (T~"(A))

lssue: such maps ' may not exist (e.g. send one Dirac
mass to a sum of several Dirac masses)



-
.

Leonid Kantqrovich



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

c(x,y) dr(zr,y)



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

[[ ey dnia



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

ir#f // c(x,y)dr(x,y)



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

e, v) = int // c(z,y)dn(z,y)



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

T (11, v) = mf// (2, ) dr(z, y)

over all Tr such that { / m e Il(u,v)
\'




THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

e, v) = int // c(z,y)dn(z,y)



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

e, v) = int // c(z,y)dn(z,y)



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

e, v) = int // c(z,y)dn(z,y)

When the cost function is of the form
c(x,y) = ||z —y||’ where p>1

we say that F.1/P is the p-Wasserstein distance W,



THE KANTOROVICH PROBLEM

Existence may not hold in the Monge problem because
each point has to be sent to a unique destination

. Relax this constraint and allow mass splitting

e, v) = int // c(r,y) dm(z,y)
When the cost function is of the form
c(z,y) = ||z —yll” where p>1
we say that F.1/P is the p-Wasserstein distance W,

Benefits: existence under mild assumptions
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SOME PROPERTIES ON THE
KANTOROVICH PROBLEM

Duality T, v) = Sup /gbdunt/wdy

¢@¢<C

Metric Properties

W, is a geodesic distance over the set &2, (R%) of
probability measures with finite p*" moment

Issues: both algorithmic and statistical limitations
in Machine Learning
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LIMITATION TO THE KANTOROVICH PROBLEM

1. Algorithmic limitations

. The discrete problem is a Linear Program in O (n” logn)

. Lack of differentiability

2. Statistical limitations

Wasserstein distances suffer from the curse of
dimensionality
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Dimension 2

Wasserstein = 1

n = 100 Estimation error = 0.15
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BEYOND THESE LIMITATIONS

Sliced Approach

SWelp,v) = Te(Poylts poyv) dO

gd—1

Entropic regularization

Sy = inf [ edr o+ 9KL(xlu @ v)
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DISTANCES

. . E
In practice: convex relaxation

Sk(:uv V) — Oglﬁ%lfl /4% (Ql/Q#Ma Ql/Q#V) xzf A

= b N
/Z;"\‘j ETﬂV/

Properties

. It defines a geodesic metric which is equivalent to Ws:

\/7W2<8k<W2

. The sequence k — Sk(u,v) is increasing, concave and

Sk+1(1, V) < \/1 + E&c(ﬂa V)
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Reinterpretation

Si (i, v) _we%l(lgu)z)\l (//x— (x —y dﬂ'ilfy))

convex functlon of T

= max T U
0<O =<1 dg, (:uv )
trace(Q2)=k
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- max %(,u, V) where € is a class of functions
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GROUND-COST ADVERSARIAL TRANSPORT

Instead of restricting the ground-cost function € to be of
the form d?), we can generalize the problem as follows:

max L%(,u, V) — f(C) for some convex f

- Links with the Robust Optimization literature

- Links with the matchings literature in Economics

nitially proposed by Genevay et al. in 2017 to learn
generative models
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max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ well(p,v)
Sion’s minimax g

theorem min max/cdﬂ Bl f(C)
WGH(,UJ?V) ¢

= min (7
WEH(,u,I/)f ( )

ake f(c)=¢eR" (C — CO) where R is convex:

inf // co(z,y)dn(x,y) + eR(m)

mell(p,v)

= sup Z.(u, v) — R (C — CO)

E
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Is the adversarial cost C, an interesting 7
dissimilarity measure on the ground space e

Short answer: In a sense, no.

Theorem: Under some technical assumption on R (verified
for the entropic or quadratic regularizations), there exists
functions @ and ¥ such that

c:(2,y) = o(z) + ¥(y)

is an optimal adversarial cost, i.e. is solution to

sup Z.(1,v) — eR” (C — CO)

E
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Let /1 and V be two probability measures over R

1.

it [ o = T(a) Pdp(a)

Typ=v

Brenier Theorem

It [ is absolutely continuous with respect to
the Lebesgue measure, the Monge problem
admits a unique solution
f the Monge problem admits a solution /',
then there exists a convex function f, called
a Brenier potential, s.t.

T =V



When the optimal map exists (e.g. when [t has a
density), what kind of reqularity does it exhibit ?



When the optimal map exists (e.g. when [t has a
density), what kind of reqularity does it exhibit ?

Without turther assumptions on [t and I/, we cannot

even hope for continuity. Many results by Caffarelli,
De Philippis, Kim, Figalli...




When the optimal map exists (e.g. when [t has a
density), what kind of reqularity does it exhibit ?

Without turther assumptions on [t and I/, we cannot

even hope for continuity. Many results by Caffarelli,
De Philippis, Kim, Figalli...










Instead of finding assumptions under which the
optimal map exists and exhibits some regularity, we
will enforce such regularity directly in the OT

problem.
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th and strongly convex

IS SMOO

We ask that |



th and strongly convex

IS SMOO

We ask that |




But there may not even such a regular [ that is
admissible for the Monge problem, i.e. such

that (V )y = 1.



But there may not even such a regular [ that is
admissible for the Monge problem, i.e. such

that (V )y = 1.

Instead, we will try to best approximate I as a
push-torward of /4 through a regular map:

Smooth and Strongly Convex
Nearest Brenier Potentials
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Even when the measures are discrete, this is a
infinite dimensional optimization problem!

in Wo |V fsu, v
(min W [V fyu ]x

n

min ~ W; g ;0. ,V

Zl,...ZnERd i—1
ueR"™ -

wi = Uj + (25, Ti — ;)

1 1 /
= (—wf<@W+amr~wP—2—@f=%wf—mﬁ

o(1—¢/T) \ L 3
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1 — 1
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1=1 1=1
—B [ € argmin W [V fy/in, i)
o JE€Fe. L
1>

We can easily compute the map on any new point
by solving a cheap QCQP

min v
vER, geR4

s.t. Vi, v > u; + (27, v — x;)
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Llyeoeydn ~ U Yty ey Yn YV
n n
A 1 A 1
:u’fl:_E :5% Vn:_i :5%
N “ (2
1=1 1=1

b [ € argmin Wy [V fyfin, 0y
) L JE€Fe. L

We can easily compute the map on any new point
by solving a cheap QCQP

This defines an estimator V f"of the optimal transport
map sending (i to I/

We define the SSNB estimator as a plug-in:
W3 = [l = v (lFdu(o
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Estimation Error depending on K

Local Regularity

2
A B B E N E R R ENEEEEEEREEEEEEEEEEEEEEEEEEEETD
1‘ ————————--——-—————3Is
14 s
0.51
—8— SSNB
2415 "5 =060
ot < — s =71000
0.2 — : . . ; .
0.017 0.05 0.1 0.25 05 0.75 1
Cluster ratio K/n
2 [
180 s
1 |
0.51
mE B EEEN - m l"]_]_S Sw‘l lllllll HE " BN NN EEEEN .4‘9
0.2 I I S S .. ———————.\—‘——’—7,",
82s P
0.11 —— SSNB S— 325 :
13s| 7S
0.05{ """ n=60 =
' == n=1000
0.017 0.05 0.1 0.25 0.5 0.75 1

Cluster ratio K/n







Thank you for your attention



