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COMPARING DISTRIBUTIONS

1. Vertical comparison

Look at the difference, or
the ratio of the densities

e.g. Total Variation distance,

Kullback Leibler divergence, etc.



COMPARING DISTRIBUTIONS

2. Horizontal comparison
aka Optimal Transport

Move the mass across the
ground space

! Need for a notion of
displacement cost on the
ground space
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OPTIMAL TRANSPORT

Data:
wo distributions /t and 17 over R?

Parameter:
A (countinuous) cost function

c:RYXRY SR

Definition of Optimal Transport (OT):

Te(1,v) = mf// () dn(x, )

over all 7Tsuch that
/ dw(az,m — du(y) ¥y
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OPTIMAL TRANSPORT

Iwo main questions in practice

1. How to choose the ground cost C in a way that makes

sense for the data distributions (1 and 1/ ?

2. How to compute/approximate the OT cost 7.( 1, V),

at least when the measures are discrete (i.e. are finite sums
of Dirac masses) in a scalable way?
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1. How to choose the ground cost C in a way that makes
sense for the data distributions (tand v/ ?

1.Monge initially proposed c(z,y) = ||z — ||
2.This was generalized to cost functions of the form
c(z,y) = llz —yl” where p>1
(in this case, we say that Z.1/Pis the p-Wasserstein distance)

But does it make
sense when the
ground space is g
high-dimensional

But does it make sense 7

when the data lives on a
low-dimensional manifold @
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GROUND COST

|[dea: Find a ground cost ¢ that is adversarial, i.e. that best

separates the two distributions by maximizing the OT cost

max %(M, V) — f(C) for some convex f
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IN ECONOMICS

Data: Two probability distributions 1 and v representing two
groups of people (e.g. men and women), and a matching
between them 7y (e.g. marriage/dating data)

Problem: Explain/understand the observed matching 7o

Method: Assume mg is optimal for a certain ground-cost ¢,
which we can then interpret. We just have to solve:

sup 7. (u, V) —/cdwo

In practice, economists assume that
ce €{dGy: (z,y) = (z—y) ' Qz —y) | Q= 0,]1Q] <1}

and seek (), i.e. rather solve

sup 7. ([, v) — /cdwo — R™(c)
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REGULARIZATION

2. How to compute/approximate the OT cost 7. (4, /) ?

1. This is a Linear Program — O(n”) complexity

2. Entropic regularization — C’)(nz) Sinkhorn algorithm,
GPU-friendly, differentiable..

mf// c(x,y)dr(x,y) + eR(m)

where R(m) = KL(7||p ® v)

Other regulanza’uons have been proposed: e.g. quadratic,
group-lasso, capacity constraints, with different algorithms
and effects on the OT plan / value



REGULARIZATION

2. How to compute/approximate the OT cost 7. (4, /) ?

1. This is a Linear Program — O(n”) complexity

2. Entropic regularization — O(n*) Sinkhorn algorithm,
GPU-friendly, differentiable...

inf / / c(2.y) dr(z.y) + eR(m)

How can we interpret the
effect of the regularization ¢



TWO VIEWS
OF THE SAME
PHENOMENON




GROUND-COST ADVERSARIAL TRANSPORT

mCaX 576(:“7 V) - f(C)



GROUND-COST ADVERSARIAL TRANSPORT

max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ mwell(p,v)



GROUND-COST ADVERSARIAL TRANSPORT

max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ mwell(p,v)
Sion’s minimax g

theorem



GROUND-COST ADVERSARIAL TRANSPORT

max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ well(p,v)
Sion’s minimax g

theorem min max/cdﬂ Bl f(C)

mell(p,v) ¢



GROUND-COST ADVERSARIAL TRANSPORT

max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ well(p,v)
Sion’s minimax g

theorem min max/cdﬂ Bl f(C)
WGH(,UJ?V) ¢

= min (7
WEH(,u,I/)f ( )



GROUND-COST ADVERSARIAL TRANSPORT

max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ well(p,v)
Sion’s minimax g

theorem min max/cdﬂ Bl f(C)
WGH(,UJ?V) ¢

= min (7
WEH(,u,I/)f ( )

C — Cp

) where R is convex:

ake f(c) = eR* (

E



GROUND-COST ADVERSARIAL TRANSPORT

max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ mwell(p,v)
Sion’s minimax g

theorem min max/cdﬂ Bl f(C)
WGH(,UJ?V) ¢

= min (7
WEH(,u,I/)f ( )

ake f(c)=¢eR" (C ;CO) where R is convex:

fi(m) = Sup/cdw —eR” (C;C())




GROUND-COST ADVERSARIAL TRANSPORT
max 7, (,v) — f(¢) = max_min /cdw—f(c)

C WEH(M,V)
Sion’s minimax g
theorem — min max cdm — f(C)
mell(p,v) ¢
= min f*(m)
WEH(Mal/)

ake f(c)=¢eR" (C ;CO) where R is convex:

fr(m) = Sup/cdw—sR* (C_CO> N Sup/(co +ed) dm — eR™(d)

E d




GROUND-COST ADVERSARIAL TRANSPORT
max 7, (,v) — f(¢) = max_min /cdw—f(c)

C WEH(M,V)
Sion’s minimax g
theorem — min max cdm — f(C)
mell(p,v) ¢
= min f*(m)
WEH(Mal/)

C — Cp

) where R is convex:

ake f(c) zsR*< .
() :Sgp/CdW_gR* (c—Co> :Sup/(co+gd) dr — eR*(d)

e d

:/coderssup/ddW—R*(d)

d




GROUND-COST ADVERSARIAL TRANSPORT
max 7, (,v) — f(¢) = max_min /cdw—f(c)

C WEH(M,V)
Sion’s minimax g
theorem — min max cdm — f(C)
mell(p,v) ¢
= min f*(m)
WEH(Mal/)

C — Cp

) where R is convex:

ake f(c) zsR*< .
() :Sgp/CdW_gR* (c—Co> :Sup/(co+gd) dr — eR*(d)

e d

:/coderssup/ddW—R*(d)

d

:/co dm + e R™ ()



GROUND-COST ADVERSARIAL TRANSPORT

max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ well(p,v)
Sion’s minimax g

theorem min max/cdﬂ Bl f(C)

mell(p,v) ¢

= min (7
WEH(,u,I/)f ( )

C — Cp

) where R is convex:

ake f(c) =eR" ( -
f(m) zsup/cdw—gR* (C_C()) =Sup/(co+5d) dm — e R*(d)

c S d

:/codﬂ—l—ssup/ddw—R*(d)

d

:/co dr + e R** () :/COdW eR(m)



GROUND-COST ADVERSARIAL TRANSPORT

max 7, (,v) — f(¢) = max_min /cdw—f(c)

¢ well(p,v)
Sion’s minimax g

theorem min max/cdﬂ Bl f(C)
WGH(,UJ?V) ¢

= min (7
WEH(,u,I/)f ( )

C — Cp

) where R is convex:

ake f(c) = eR* (

E



GROUND-COST ADVERSARIAL TRANSPORT
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Sion’s minimax g

theorem min max/cdﬂ Bl f(C)
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= min (7
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ake f(c)=¢eR" (C — CO) where R is convex:
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= sup Z.(u, v) — R (C — CO)

E




GROUND CoOST ROBUSTNESS & REGULARIZATION

Theorem: Reqgularized OT is ground cost adversarial in the
following sense

inf // co(z,y)dn(x,y) + eR(m)

mell(p,v)

= sup J.(u, v) — e (C — CO)

E

where R is a convex regularizer

and R*is the convex conjugate of R:

R*(c) = sup / cdr — R(7)

T
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min /CQ dm 4+ eKL(7||pn ® v)
mell(p,v)

:sup%(,u,u)—efexp (C;CO) dit @ v+ ¢
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lth .
largest eigenvalue

X/(/ [ =we - 0)" dno)

k
S2(p,v) = min
k() () 5=Z1
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EXAMPLES: SUBSPACE ROBUST WASSERSTEIN

I"™ largest eigenvalue

convex functlon of T

= max Jp (u,V
0= <1 dg, (:uv )
trace({2)=k

Where d?,(z,y) = (z —y) ' Q(z — y) is the squared Mahalanobis distance
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Is the adversarial cost ¢, an interesting 7
dissimilarity measure on the ground space o
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min _ f(7) = max 7. (/1 v

mell(p,v)
— sup max d +/ dv — f
p ¢<C/<b v (0

—Sliprgaf/qbdw/wclv— c)— DY <c)

—max [ Gdut [Gdv—int 0 + (6B <)
—max [Gdu+ [vdv— it (o

c2pDY

f e.g. f*is increasing, ;géwf (¢) = f*(¢ @ Y) hence:

min f(7 )_max/gbdqu/de—f*(ﬁb@w)

mell(p,v) ¢,y
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Duality
min  f(m) —max/gbdu+/¢dV— (9 @)

mell(p,v)
= max Ty (1) — (o ® )
< max J¢(p, v) — f7(¢)

Main result Q — min f( )
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CHARACTERIZATION OF THE GROUND-COST

Duality

_min f(7 —max/qsdm/wdu— ‘(b V)
= max Tpay (1, V) — [ (¢ S )

O,
< max J¢(p, v) — f7(¢)
Main result Q f( )
— mm
mell(p,v)

So the inequality is an equality and there exists a separable
cost function that is an optimal adversarial ground-cost
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Is the adversarial cost C, an interesting 7
dissimilarity measure on the ground space e

Short answer: In a sense, no.

Theorem: Under some technical assumption on R (verified
for the entropic or quadratic regularizations), there exists
functions @ and ¥ such that

c:(2,y) = o(z) + ¥(y)

is an optimal adversarial cost, i.e. is solution to

sup Z.(p, v) — eR” (C — CO)

€



WHAT | COULD NOT TALK ABOUT

- Restriction to nonnegative adversarial costs sup. ..
c>0

- Extension to several measures

Thank you

francoispierrepaty.github.io




