Regularized Optimal Transport is Ground Cost Adversarial

MokaMeeting

May 11, 2022

François-Pierre Paty

francoispierrepaty.github.io

Based on a joint work with Marco Cuturi

COMPARING DISTRIBUTIONS

1. Vertical comparison

Look at the difference, or the ratio of the densities

e.g. Total Variation distance, Kullback Leibler divergence, etc.

COMPARING DISTRIBUTIONS

2. Horizontal comparison aka Optimal Transport

Move the mass across the ground space

! Need for a notion of displacement cost on the ground space

Data:

Two distributions μ and ν over \mathbb{R}^d

Parameter:

A (countinuous) cost function

$$c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

Data:

Two distributions μ and ν over \mathbb{R}^d

Parameter:

A (countinuous) cost function

$$c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

Data:

Two distributions μ and ν over \mathbb{R}^d

Parameter:

A (countinuous) cost function

$$c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

$$c(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y})$$

Data:

Two distributions μ and ν over \mathbb{R}^d

Parameter:

A (countinuous) cost function

$$c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

$$\iint c(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y})$$

Data:

Two distributions μ and ν over \mathbb{R}^d

Parameter:

A (countinuous) cost function

$$c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

$$\inf_{\pi} \iint c(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y})$$

Data:

Two distributions μ and ν over \mathbb{R}^d

Parameter:

A (countinuous) cost function

$$c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

$$\mathscr{T}_c(\mu, \nu) = \inf_{\pi} \iint c(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y})$$

Data:

Two distributions μ and ν over \mathbb{R}^d

Parameter:

A (countinuous) cost function

$$c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$$

$$\mathscr{T}_c(\mu, \nu) = \inf_{\pi} \iint c(x,y) \, d\pi(x,y)$$
 over all π such that $\begin{cases} \int d\pi(x,y) = d\mu(x) \ \forall x \ \int d\pi(x,y) = d\nu(y) \ \forall y \end{cases}$

Two main questions in practice

Two main questions in practice

1. How to choose the ground cost c in a way that makes sense for the data distributions μ and ν ?

Two main questions in practice

- 1. How to choose the ground cost c in a way that makes sense for the data distributions μ and ν ?
- 2. How to compute/approximate the OT cost $\mathcal{T}_c(\mu, \nu)$, at least when the measures are discrete (i.e. are finite sums of Dirac masses) in a scalable way?

1. How to choose the ground cost c in a way that makes sense for the data distributions μ and ν ?

- 1. How to choose the ground cost c in a way that makes sense for the data distributions μ and ν ?
- 1. Monge initially proposed $c(x, y) = \|x y\|$

- 1. How to choose the ground cost c in a way that makes sense for the data distributions μ and ν ?
- 1. Monge initially proposed c(x, y) = ||x y||
- 2. This was generalized to cost functions of the form

$$c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$$
 where $p \ge 1$

(in this case, we say that $\mathscr{T}_c^{1/p}$ is the p-Wasserstein distance)

- 1. How to choose the ground $\cos t c$ in a way that makes sense for the data distributions μ and ν ?
- 1. Monge initially proposed c(x, y) = ||x y||
- 2. This was generalized to cost functions of the form

$$c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$$
 where $p \ge 1$

(in this case, we say that $\mathscr{T}_c^{1/p}$ is the p-Wasserstein distance)

But does it make sense when the ground space is high-dimensional

- 1. How to choose the ground cost c in a way that makes sense for the data distributions μ and ν ?
- 1. Monge initially proposed c(x, y) = ||x y||
- 2. This was generalized to cost functions of the form

$$c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^p$$
 where $p \ge 1$

(in this case, we say that $\mathcal{T}_c^{1/p}$ is the p-Wasserstein distance)

But does it make sense when the ground space is high-dimensional

But does it make sense when the data lives on a low-dimensional manifold

Idea: Find a ground cost c that is adversarial, i.e. that best separates the two distributions by maximizing the OT cost

 $\max_{c \in \mathscr{C}} \mathscr{I}_c(\mu, \nu)$ where \mathscr{C} is a convex class of functions

Idea: Find a ground cost c that is adversarial, i.e. that best separates the two distributions by maximizing the OT cost

 $\max_{c \in \mathscr{C}} \mathscr{T}_c(\mu, \nu) \text{ where } \mathscr{C} \text{ is a convex class of functions}$ $\max_{c} \mathscr{T}_c(\mu, \nu) - f(c) \text{ for some convex } f$ $f(c) = \begin{cases} 0 & \text{if } c \in \mathscr{C} \\ +\infty & \text{if } c \notin \mathscr{C} \end{cases}$

$$f(c) = \begin{cases} 0 & \text{if } c \in \mathscr{C} \\ +\infty & \text{if } c \notin \mathscr{C} \end{cases}$$

Idea: Find a ground cost c that is adversarial, i.e. that best separates the two distributions by maximizing the OT cost

$$\max_{c} \mathscr{T}_c(\mu, \nu) - f(c)$$
 for some convex f

- Links with the Robust Optimization literature
- Links with the matchings literature in Economics
- Initially proposed by Genevay et al. in 2017 to learn generative models
- When \mathscr{C} is the set of Mahalanobis distances, it defines the Subspace Robust Wasserstein distances (ICML 2019, cf. in a few slides)

IN ECONOMICS

Data: Two probability distributions μ and ν representing two groups of people (e.g. men and women), and a matching between them π_0 (e.g. marriage/dating data)

Problem: Explain/understand the observed matching π_0

Method: Assume π_0 is optimal for a certain ground-cost c_* , which we can then interpret. We just have to solve:

$$\sup_{c} \mathscr{T}_{c}(\mu, \nu) - \int c \, d\pi_{0}$$

In practice, economists assume that

$$c_{\star} \in \left\{ d_{\Omega}^{2} : (x, y) \mapsto (x - y)^{\top} \Omega(x - y) \, | \, \Omega \succeq 0, \|\Omega\| \le 1 \right\}$$

and seek Ω , *i.e.* rather solve

$$\sup_{c} \mathscr{T}_{c}(\mu, \nu) - \int c \, d\pi_{0} - R^{*}(c)$$

REGULARIZATION

- 2. How to compute/approximate the OT cost $\mathscr{T}_c(\mu, \nu)$?
- 1. This is a Linear Program $\longrightarrow \mathcal{O}(n^3)$ complexity
- 2. Entropic regularization $\longrightarrow \mathcal{O}(n^2)$ Sinkhorn algorithm, GPU-friendly, differentiable...

$$\inf_{\pi} \iint c(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y}) + \varepsilon R(\pi)$$

where $R(\pi) = \mathrm{KL}(\pi||\mu \otimes \nu)$

Other regularizations have been proposed: e.g. quadratic, group-lasso, capacity constraints, with different algorithms and effects on the OT plan / value

REGULARIZATION

- 2. How to compute/approximate the OT cost $\mathscr{T}_c(\mu, \nu)$?
- 1. This is a Linear Program $\longrightarrow \mathcal{O}(n^3)$ complexity
- 2. Entropic regularization $\longrightarrow \mathcal{O}(n^2)$ Sinkhorn algorithm, GPU-friendly, differentiable...

$$\inf_{\pi} \iint c(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y}) + \varepsilon R(\pi)$$

How can we interpret the effect of the regularization

TWO VIEWS OF THE SAME PHENOMENON

$$\max_{c} \mathscr{T}_{c}(\mu, \nu) - f(c)$$

$$\max_{c} \mathcal{T}_{c}(\mu, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi - f(c)$$

$$\max_{c} \mathcal{T}_c({\color{red}\mu}, {\color{blue}\nu}) - f(c) = \max_{c} \min_{\pi \in \Pi({\color{blue}\mu}, {\color{blue}\nu})} \int c \, d\pi - f(c)$$
 Sion's minimax theorem

$$\max_{c} \mathcal{T}_{c}(\mu, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi - f(c)$$
 Sion's minimax theorem
$$= \min_{c} \max_{\pi \in \Pi(\mu, \nu)} \sum_{c} \int c \, d\pi - f(c)$$

$$\max_{c} \mathcal{T}_{c}(\mu, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi - f(c)$$
 Sion's minimax theorem
$$= \min_{\pi \in \Pi(\mu, \nu)} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\mu, \nu)} f^{*}(\pi)$$

$$\max_{c} \mathcal{T}_{c}(\underline{\mu}, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\underline{\mu}, \nu)} \int c \, d\pi - f(c)$$
 Sion's minimax theorem
$$= \min_{\pi \in \Pi(\underline{\mu}, \nu)} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\underline{\mu}, \nu)} f^{*}(\pi)$$

Take
$$f(c) = \varepsilon R^* \left(\frac{c - c_0}{\varepsilon} \right)$$
 where R is convex:

$$\max_{c} \mathcal{T}_{c}(\mu, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi - f(c)$$
Sion's minimax theorem
$$= \min_{\pi \in \Pi(\mu, \nu)} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\mu, \nu)} f^{*}(\pi)$$

Take
$$f(c)=\varepsilon R^*\left(\frac{c-c_0}{\varepsilon}\right)$$
 where R is convex:
$$f^*(\pi)=\sup_{c}\int c\,d\pi-\varepsilon R^*\left(\frac{c-c_0}{\varepsilon}\right)$$

$$\max_{c} \mathscr{T}_{c}(\mu, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi - f(c)$$
Sion's minimax theorem
$$= \min_{\pi \in \Pi(\mu, \nu)} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\mu, \nu)} f^{*}(\pi)$$

Take
$$f(c) = \varepsilon R^* \left(\frac{c - c_0}{\varepsilon} \right)$$
 where R is convex:
$$f^*(\pi) = \sup_{c} \int_{-\varepsilon}^{\varepsilon} c \, d\pi - \varepsilon R^* \left(\frac{c - c_0}{\varepsilon} \right) = \sup_{d} \int_{-\varepsilon}^{\varepsilon} (c_0 + \varepsilon d) \, d\pi - \varepsilon R^*(d)$$

$$\max_{c} \mathcal{T}_{c}(\underline{\mu}, \underline{\nu}) - f(c) = \max_{c} \min_{\pi \in \Pi(\underline{\mu}, \underline{\nu})} \int c \, d\pi - f(c)$$
Sion's minimax theorem
$$= \min_{\pi \in \Pi(\underline{\mu}, \underline{\nu})} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\underline{\mu}, \underline{\nu})} f^{*}(\pi)$$
Take $f(c) = \varepsilon R^{*}\left(\frac{c - c_{0}}{\varepsilon}\right)$ where R is convex:
$$f^{*}(\pi) = \sup_{c} \int c \, d\pi - \varepsilon R^{*}\left(\frac{c - c_{0}}{\varepsilon}\right) = \sup_{d} \int (c_{0} + \varepsilon d) \, d\pi - \varepsilon R^{*}(d)$$

$$= \int c_{0} \, d\pi + \varepsilon \sup_{d} \int d \, d\pi - R^{*}(d)$$

$$\max_{c} \mathcal{T}_{c}(\underline{\mu}, \underline{\nu}) - f(c) = \max_{c} \min_{\pi \in \Pi(\underline{\mu}, \underline{\nu})} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\underline{\mu}, \underline{\nu})} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\underline{\mu}, \underline{\nu})} f^{*}(\pi)$$

$$= \min_{\pi \in \Pi(\underline{\mu}, \underline{\nu})} f^{*}(\pi)$$
Take $f(c) = \varepsilon R^{*}\left(\frac{c - c_{0}}{\varepsilon}\right)$ where R is convex:
$$f^{*}(\pi) = \sup_{c} \int c \, d\pi - \varepsilon R^{*}\left(\frac{c - c_{0}}{\varepsilon}\right) = \sup_{d} \int (c_{0} + \varepsilon d) \, d\pi - \varepsilon R^{*}(d)$$

$$= \int c_{0} \, d\pi + \varepsilon \sup_{d} \int d \, d\pi - R^{*}(d)$$

$$= \int c_{0} \, d\pi + \varepsilon R^{**}(\pi)$$

$$\max_{c} \mathcal{T}_{c}(\mu, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\mu, \nu)} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\mu, \nu)} f^{*}(\pi)$$
Take $f(c) = \varepsilon R^{*}\left(\frac{c - c_{0}}{\varepsilon}\right)$ where R is convex:
$$f^{*}(\pi) = \sup_{c} \int c \, d\pi - \varepsilon R^{*}\left(\frac{c - c_{0}}{\varepsilon}\right) = \sup_{d} \int (c_{0} + \varepsilon d) \, d\pi - \varepsilon R^{*}(d)$$

$$= \int c_{0} \, d\pi + \varepsilon \sup_{d} \int d \, d\pi - R^{*}(d)$$

$$= \int c_{0} \, d\pi + \varepsilon R^{**}(\pi) = \int c_{0} \, d\pi + \varepsilon R(\pi)$$

$$\max_{c} \mathscr{T}_{c}(\mu, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi - f(c)$$
Sion's minimax theorem
$$= \min_{\pi \in \Pi(\mu, \nu)} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\mu, \nu)} f^{*}(\pi)$$

Take
$$f(c) = \varepsilon R^* \left(\frac{c - c_0}{\varepsilon} \right)$$
 where R is convex:

$$\max_{c} \mathcal{T}_{c}(\mu, \nu) - f(c) = \max_{c} \min_{\pi \in \Pi(\mu, \nu)} \int c \, d\pi - f(c)$$
Sion's minimax theorem
$$= \min_{\pi \in \Pi(\mu, \nu)} \max_{c} \int c \, d\pi - f(c)$$

$$= \min_{\pi \in \Pi(\mu, \nu)} f^{*}(\pi)$$

Take
$$f(c) = \varepsilon R^* \left(\frac{c - c_0}{\varepsilon} \right)$$
 where R is convex:

$$\inf_{\pi \in \Pi(\mu, \nu)} \iint c_0(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y}) + \varepsilon R(\pi)$$

$$= \sup_{c} \mathcal{T}_c(\mu, \nu) - \varepsilon R^* \left(\frac{c - c_0}{\varepsilon}\right)$$

GROUND COST ROBUSTNESS REGULARIZATION

Theorem: Regularized OT is ground cost adversarial in the following sense

$$\inf_{\pi \in \Pi(\mu, \nu)} \iint c_0(\mathbf{x}, \mathbf{y}) d\pi(\mathbf{x}, \mathbf{y}) + \varepsilon R(\pi)$$

$$= \sup_{c} \mathcal{T}_c(\mu, \nu) - \varepsilon R^* \left(\frac{c - c_0}{\varepsilon}\right)$$

where R is a convex regularizer and R^* is the convex conjugate of R:

$$R^*(c) = \sup_{\pi} \int c \, d\pi - R(\pi)$$

EXAMPLES: ENTROPIC OT

$$\min_{\pi \in \Pi(\mu, \nu)} \int c_0 \, d\pi + \varepsilon KL(\pi \| \mu \otimes \nu)$$

EXAMPLES: ENTROPIC OT

$$\min_{\pi \in \Pi(\mu, \nu)} \int c_0 \, d\pi + \varepsilon KL(\pi \| \mu \otimes \nu)$$

$$= \sup_{c} \mathscr{T}_{c}(\mu, \nu) - \varepsilon \int \exp\left(\frac{c - c_{0}}{\varepsilon}\right) d\mu \otimes \nu + \varepsilon$$

$$S_k^2(\boldsymbol{\mu}, \boldsymbol{\nu}) = \min_{\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} \sum_{l=1}^k \lambda_l \left(\iint (\boldsymbol{x} - \boldsymbol{y}) (\boldsymbol{x} - \boldsymbol{y})^\top d\pi(\boldsymbol{x}, \boldsymbol{y}) \right)$$

$$\mathcal{S}_k^2(\pmb{\mu},\pmb{
u}) = \min_{\pi \in \Pi(\pmb{\mu},\pmb{
u})} \sum_{l=1}^k \lambda_l \left(\iint (\pmb{x}-\pmb{y})(\pmb{x}-\pmb{y})^ op d\pi(\pmb{x},\pmb{y})
ight)$$

$$\mathcal{S}_k^2(\pmb{\mu}, \pmb{\nu}) = \min_{\pi \in \Pi(\pmb{\mu}, \pmb{\nu})} \underbrace{\sum_{l=1}^k \lambda_l \left(\iint (\pmb{x} - \pmb{y}) (\pmb{x} - \pmb{y})^\top d\pi(\pmb{x}, \pmb{y}) \right)}_{\text{convex function of } \pi}$$

$$\mathcal{S}_k^2(\pmb{\mu}, \pmb{\nu}) = \min_{\pi \in \Pi(\pmb{\mu}, \pmb{\nu})} \underbrace{\sum_{l=1}^k \lambda_l \left(\iint (\pmb{x} - \pmb{y}) (\pmb{x} - \pmb{y})^\top d\pi(\pmb{x}, \pmb{y}) \right)}_{\text{convex function of } \pi}$$

$$= \max_{\substack{0 \leq \Omega \leq I \\ \operatorname{trace}(\Omega) = k}} \mathcal{T}_{d_{\Omega}^{2}}(\mu, \nu)$$

$$\mathcal{S}_k^2(\pmb{\mu},\pmb{\nu}) = \min_{\pi \in \Pi(\pmb{\mu},\pmb{\nu})} \underbrace{\sum_{l=1}^k \lambda_l \left(\iint (\pmb{x}-\pmb{y})(\pmb{x}-\pmb{y})^\top d\pi(\pmb{x},\pmb{y}) \right)}_{\text{convex function of } \pi}$$

$$= \max_{\substack{0 \leq \Omega \leq I \\ \operatorname{trace}(\Omega) = k}} \mathcal{T}_{d_{\Omega}^{2}}(\mu, \nu)$$

Where $d_{\Omega}^2(x,y) = (x-y)^{\top}\Omega(x-y)$ is the squared Mahalanobis distance

$$\sup_{c} \mathscr{T}_{c}(\mu, \nu) - \int c \, d\pi_{0} - R^{*}(c)$$

$$\sup_{c} \mathcal{T}_{c}(\mu, \nu) - \int c \, d\pi_{0} - R^{*}(c)$$

$$\sup_{c} \mathcal{T}_{c}(\mu, \nu) - \int c \, d\pi_{0} - R^{*}(c)$$

$$= \min_{\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} R(\pi - \pi_0)$$

$$\sup_{c} \mathcal{T}_{c}(\mu, \nu) - \int c \, d\pi_{0} - R^{*}(c)$$

$$= \min_{\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} R(\pi - \pi_0)$$

Is the adversarial cost c_{\star} an interesting dissimilarity measure on the ground space

$$\min_{\pi \in \Pi(\mu, \nu)} f(\pi) = \max_{c} \mathscr{T}_{c}(\mu, \nu) - f^{*}(c)$$

$$\min_{\pi \in \Pi(\mu, \nu)} f(\pi) = \max_{c} \mathcal{T}_{c}(\mu, \nu) - f^{*}(c)$$

$$= \sup_{c} \max_{\phi \oplus \psi \leq c} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c)$$

$$\min_{\pi \in \Pi(\mu, \nu)} f(\pi) = \max_{c} \mathcal{T}_{c}(\mu, \nu) - f^{*}(c)$$

$$= \sup_{c} \max_{\phi \oplus \psi \leq c} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c)$$

$$= \sup_{c} \max_{\phi, \psi} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c) - \iota(\phi \oplus \psi \leq c)$$

$$\min_{\pi \in \Pi(\mu,\nu)} f(\pi) = \max_{c} \mathcal{T}_{c}(\mu,\nu) - f^{*}(c)$$

$$= \sup_{c} \max_{\phi \oplus \psi \leq c} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c)$$

$$= \sup_{c} \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c) - \iota(\phi \oplus \psi \leq c)$$

$$= \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - \inf_{c} f^{*}(c) + \iota(\phi \oplus \psi \leq c)$$

$$\min_{\pi \in \Pi(\mu,\nu)} f(\pi) = \max_{c} \mathscr{T}_{c}(\mu,\nu) - f^{*}(c)$$

$$= \sup_{c} \max_{\phi \oplus \psi \leq c} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c)$$

$$= \sup_{c} \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c) - \iota(\phi \oplus \psi \leq c)$$

$$= \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - \inf_{c} f^{*}(c) + \iota(\phi \oplus \psi \leq c)$$

$$= \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - \inf_{c > \phi \oplus \psi} f^{*}(c)$$

$$\min_{\pi \in \Pi(\mu,\nu)} f(\pi) = \max_{c} \mathcal{T}_{c}(\mu,\nu) - f^{*}(c)$$

$$= \sup_{c} \max_{\phi \oplus \psi \leq c} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c)$$

$$= \sup_{c} \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c) - \iota(\phi \oplus \psi \leq c)$$

$$= \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - \inf_{c} f^{*}(c) + \iota(\phi \oplus \psi \leq c)$$

$$= \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - \inf_{c \geq \phi \oplus \psi} f^{*}(c)$$

If e.g. f^* is increasing, $\inf_{c \ge \phi \oplus \psi} f^*(c) = f^*(\phi \oplus \psi)$ hence:

$$\min_{\pi \in \Pi(\mu,\nu)} f(\pi) = \max_{c} \mathcal{T}_{c}(\mu,\nu) - f^{*}(c)$$

$$= \sup_{c} \max_{\phi \oplus \psi \leq c} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c)$$

$$= \sup_{c} \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - f^{*}(c) - \iota(\phi \oplus \psi \leq c)$$

$$= \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - \inf_{c} f^{*}(c) + \iota(\phi \oplus \psi \leq c)$$

$$= \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - \inf_{c \geq \phi \oplus \psi} f^{*}(c)$$

If e.g. f^* is increasing, $\inf_{c>\phi\oplus\psi}f^*(c)=f^*(\phi\oplus\psi)$ hence:

$$\min_{\pi \in \Pi(\boldsymbol{\mu}, \boldsymbol{\nu})} f(\pi) = \max_{\phi, \psi} \int \phi \, d\boldsymbol{\mu} + \int \psi \, d\boldsymbol{\nu} - f^*(\phi \oplus \psi)$$

Duality
$$\min_{\pi \in \Pi({\color{blue}\mu}, \nu)} f(\pi) = \max_{\phi, \psi} \int \phi \, d \mu + \int \psi \, d \nu - f^*(\phi \oplus \psi)$$

Duality
$$\min_{\pi \in \Pi(\mu, \nu)} f(\pi) = \max_{\phi, \psi} \int \phi \, d\mu + \int \psi \, d\nu - f^*(\phi \oplus \psi)$$

$$= \max_{\phi, \psi} \mathscr{T}_{\phi \oplus \psi}(\mu, \nu) - f^*(\phi \oplus \psi)$$

Duality
$$\min_{\pi \in \Pi(\mu,\nu)} \widehat{f(\pi)} = \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - f^*(\phi \oplus \psi)$$

$$= \max_{\phi,\psi} \mathscr{T}_{\phi \oplus \psi}(\mu,\nu) - f^*(\phi \oplus \psi)$$

$$\leq \max_{c} \mathscr{T}_{c}(\mu,\nu) - f^*(c)$$

$$\min_{\pi \in \Pi(\mu, \nu)} f(\pi) = \max_{\phi, \psi} \int \phi \, d\mu + \int \psi \, d\nu - f^*(\phi \oplus \psi)$$

$$= \max_{\phi, \psi} \mathcal{T}_{\phi \oplus \psi}(\mu, \nu) - f^*(\phi \oplus \psi)$$

$$\leq \max_{c} \mathcal{T}_{c}(\mu, \nu) - f^*(c)$$
 Main result

$$\min_{\pi \in \Pi(\mu,\nu)} f(\pi) = \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - f^*(\phi \oplus \psi)$$

$$= \max_{\phi,\psi} \mathcal{T}_{\phi \oplus \psi}(\mu,\nu) - f^*(\phi \oplus \psi)$$

$$\leq \max_{c} \mathcal{T}_{c}(\mu,\nu) - f^*(c)$$

$$= \min_{\pi \in \Pi(\mu,\nu)} f(\pi)$$

$$\min_{\pi \in \Pi(\mu,\nu)} f(\pi) = \max_{\phi,\psi} \int \phi \, d\mu + \int \psi \, d\nu - f^*(\phi \oplus \psi)$$

$$= \max_{\phi,\psi} \mathscr{T}_{\phi \oplus \psi}(\mu,\nu) - f^*(\phi \oplus \psi)$$

$$\leq \max_{c} \mathscr{T}_{c}(\mu,\nu) - f^*(c)$$

$$= \min_{\pi \in \Pi(\mu,\nu)} f(\pi)$$

So the inequality is an equality and there exists a separable cost function that is an optimal adversarial ground-cost

Is the adversarial cost c_{\star} an interesting dissimilarity measure on the ground space

Short answer: In a sense, no.

Is the adversarial cost c_{\star} an interesting dissimilarity measure on the ground space

Short answer: In a sense, no.

Theorem: Under some technical assumption on R (verified for the entropic or quadratic regularizations), there exists functions ϕ and ψ such that

$$c: (\mathbf{x}, \mathbf{y}) \mapsto \phi(\mathbf{x}) + \psi(\mathbf{y})$$

is an optimal adversarial cost, i.e. is solution to

$$\sup_{c} \mathscr{T}_{c}(\mu, \nu) - \varepsilon R^{*} \left(\frac{c - c_{0}}{\epsilon} \right)$$

WHAT I COULD NOT TALK ABOUT

- Restriction to nonnegative adversarial costs $\sup_{c>0}\dots$
- Extension to several measures

Thank you

francoispierrepaty.github.io